Statistical Dependence: Copula Functions and Mutual Information Based Measures
نویسنده
چکیده
Accurately and adequately modelling and analyzing relationships in real random phenomena involving several variables are prominent areas in statistical data analysis. Applications of such models are crucial and lead to severe economic and financial implications in human society. Since the beginning of developments in Statistical methodology as the formal scientific discipline, correlation based regression methods have played a central role in understanding and analyzing multivariate relationships primarily in the context of the normal distribution world and under the assumption of linear association. In this paper, we aim to focus on presenting notion of dependence of random variables in statistical sense and mathematical requirements of dependence measures. We consider copula functions and mutual information which are employed to characterize dependence. Some results on copulas and mutual information as measure of dependence are presented and illustrated using real examples. We conclude by discussing some possible research questions and by listing the important contributions in this area.
منابع مشابه
Information Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملCopula Index for Detecting Dependence and Monotonicity between Stochastic Signals
This paper introduces a nonparametric copula-based index for detecting the strength and monotonicity structure of linear and nonlinear statistical dependence between pairs of random variables or stochastic signals. Our index, termed Copula Index for Detecting Dependence and Monotonicity (CIM ), satisfies several desirable properties of measures of association, including Rényi’s properties, the ...
متن کاملAn information theoretic approach to statistical dependence: copula information
We discuss the connection between information and copula theories by showing that a copula can be employed to decompose the information content of a multivariate distribution into marginal and dependence components, with the latter quantified by the mutual information. We define the information excess as a measure of deviation from a maximum entropy distribution. The idea of marginal invariant ...
متن کاملCopula Based Independent Component Analysis
We propose a parametric version of Independent Component Analysis (ICA) via Copulas families of multivariate distributions that join univariate margins to multivariate distributions. Our procedure exploits the role for copula models in information theory and in measures of association, specifically: the use of copulae densities as parametric mutual information, and as measures of association on...
متن کاملCopula-based Kernel Dependency Measures
The paper presents a new copula based method for measuring dependence between random variables. Our approach extends the Maximum Mean Discrepancy to the copula of the joint distribution. We prove that this approach has several advantageous properties. Similarly to Shannon mutual information, the proposed dependence measure is invariant to any strictly increasing transformation of the marginal v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012